Dr. Yogesh Mani Tripathi

Dr. Yogesh Mani Tripathi
Associate Professor
Ph.D, IIT Kharagpur
Ph: +91-612-255 2015
yogesh[*AT]iitp.ac.in
Research Areas
  • Statistical Decision Theory, Statistical Inference
Students
Sr. No. Photo Area of Reasearch Degree
1
Sukhdev Singh
2
Manoj Kumar Rastogi
3
Tanmay Sen
4
Tanmay Kayal
5
Devendra Pratap Singh
6
Amulya Kr. Mahto
7
Farha Sultana
8
Raj KamaL Maurya
9
Mayank Kumar Jha
Current Sponsored Projects
Sr. No. Title Principal Investigator Co-Principal Investigator Duration Sponsoring Agency Cost Status
1 Estimation with Censored Data Government of India Duration: 3 years. DST
Publications / Journals
    • Somesh Kumar & Y.M. Tripathi (2003). A note on estimating moments of a selected uniform population. J. Ind. Statist. Assoc. V. 41, No.1, pp. 129-140.
    •  
    • Somesh Kumar, Y.M. Tripathi & N. Misra (2005). James- Stein type estimators for ordered normal means. J. Statistical Computation and Simulation, V. 75, No. 7, pp. 501-511.
    •  
    • N. Misra, Somesh Kumar, E.C. van der Meulenand Y.M. Tripathi (2005). A subset selection procedure for selecting the exponential population having the longest mean lifetime when the guarantee times are the same. Commun. Statist.- Theo. Meth. V.34, No.7, pp. 1555-1569.
    •  
    • Somesh Kumar, A. Kumar & Y.M. Tripathi (2005). A note on the Pitman estimator of ordered normal means when the variances are unequal. Commun. Statist.- Theo. Meth. V.34, No.11, pp. 2115-2122.
    •  
    • Somesh Kumar & Y. M. Tripathi (2005) Estimating components of a normal mean vector under order restrictions. International J. of Appl. Math. and Statistics, V. 3, No. J05, pp. 82-96.
    •  
    • Somesh Kumar & Y. M. Tripathi (2005) On estimating the middle of three ordered normal means with applications to ecology. International J. of Ecological Economics & Statistics, V. 3, N0. S05, pp.62-71.
    •  
    • Y. M. Tripathi, Somesh Kumar & T. Srivastava (2007) Simultaneous estimation of lognormal means under order restrictions. Bulletin of Statistics & Economics, V. 1, No. S07, pp. 73-86.
    •  
    • Y. M. Tripathi&Somesh Kumar (2007) Estimating a positive normal mean. Statistical Papers, V. 48, pp. 609-629.
    •  
    • Y. M. Tripathi&Somesh Kumar (2007) Estimation of a truncated inverse Gaussian mean. J. Ind. Statist. Assoc. V. 45, N0.2, pp. 205-223.
    •  
    • Somesh Kumar & Y. M. Tripathi (2008) Estimating a restricted normal mean. Metrika V. 68, pp. 271-288.
    •  
    • Y. M. Tripathi, Somesh Kumar and T. Srivastava (2009). Estimating the mean of a lognormal population under restrictions. International J. of Appl. Math. and Statistics, V. 15, No. D09, pp. 16-31.
    •  
    • M. K. Rastogi and Y. M. Tripathi (2011). Estimating a parameter of Burr type xii distribution using hybrid censored observations. Int. J. Qual. Reliab. Manag.,Vol 28, Issue 8, pp. 885-893.
    •  
    • M. K. Rastogi and Y. M. Tripathi (2012). Estimating the Parameters of a Burr Distribution Under Progressive Type II Censoring. Statistical Methodology, Vol 9, Issue 3, pp. 381-391.
    •  
    • M. K. Rastogi, Y. M. Tripathi and S. J. Wu. (2012). Estimating the Parameters of a Bathtub Distribution Under Progressive Type-II Censoring. Journal of Applied  Statistics, Vol 39, Issue 11, 2012 , pp. 2389-2411.
    •  
    • Marchand, É.,JafariJozani, M. and Y. M. Tripathi  (2012). Inadmissible estimators of normal quantiles and two-sample problems with additional information. IMS Collection: Contemporary developments in Bayesian analysis and statistical decision theory. 8, 104-116. A Festschrift for W.E. Strawderman.
    •  
    • M. K. Rastogi and Y. M. Tripathi (2013). Estimation using hybrid censored data from a two-parameter distribution with bathtub shape.  Computational Statistics and Data Analysis, Vol 67, pp. 268-281.
    •  
    • M. K. Rastogi and Y. M. Tripathi (2013). Inference on Unknown Parameters of a Burr Distribution Under Hybrid Censoring. Statistical Papers. Vol 54, 2013, pp. 619-643.
    •  
    • Y. M. Tripathi, Somesh Kumar & C. Petropoulos (2014) Improved estimators for parameters of a Pareto distribution with a restricted scale. Statistical Methodology, V. 18,  pp. 1-13.
    •  
    • Y.M. Tripathi, Somesh Kumar and C. Petropoulos (2014) Estimation for the parameters of an exponential distribution under constrained location. Mathematical Methods of Statistics, Vol. 23, No. 1, pp. 66–79.
    •  
    • M. K. Rastogi and Y. M. Tripathi (2014). Parameter and reliability estimation for an exponentiated half logistic distribution under progressive Type II censoring. Journal of Statistical Computation and Simulation, Vol. 84, N0. 8, 1711-1727.
    •  
    • M. K. Rastogi and Y. M. Tripathi (2014). Estimation for an inverted exponentiated Rayleigh distribution under Type II progressive censoring. Journal of Applied Statistics, Vol 41, No. 11, 2375–2405.
    •  
    • S. Singh, Y.M. Tripathi and S. J. Wu (2015). On estimating parameters of a progressively censored lognormal distribution.  Journal of Statistical Computation and Simulation, Vol. 85, N0. 6, 1071-1089.
    •  
    • S. Singh, Y.M. Tripathi  and Chi-Hyuck Jun (2015). Sampling plans based on truncated life  test for a generalized inverted exponential distribution. Industrial Engineering and Management Systems 14 (2), 183-195.
    •  
    • S. Singh and Y.M. Tripathi (2015). Reliability sampling plans for a lognormal distribution under progressive first-failure censoring with cost constraint. Statistical Papers, 56 (3), 773-817.
    •  
    • Y. M. Tripathi and M. K. Rastogi (2015). Estimation using hybrid censored data from a generalized inverted exponential distribution. Communications in Statistics- Theory and Methods, Accepted.
    •  
    • Y.M. Tripathi, Somesh Kumar and C. Petropoulos (2015). Estimating the shape parameter of a Pareto distribution under restrictions. Accepted, Metrika.
    •  
    • S. Singh and Y.M. Tripathi (2015). Bayesian estimation and prediction for a hybrid censored lognormal distribution. Accepted, IEEE Transactions on Reliability.
    • Somesh Kumar, A. Kumar & Y.M. Tripathi (2002) Nonminimaxity of the Pitman  estimator of ordered normal means when the variances are unequal. XXII Ann. Conf. Indian Society for Probability and  Statistics, Univ. of Pune, August 11-14, 2002.
    •  
    • Y. M. Tripathi&Somesh Kumar (2003) Estimation of a  positive normal mean.    XXVII Indian Social Science Congress, IIT Kharagpur, December 3-7, 2003.
    •  
    • Y. M. Tripathi&Somesh Kumar (2003) Estimating parameters of an exponential distribution under inequality restrictions. International Conference on Productivity, Quality and Reliability, December 12-14, 2003, Kolkata.
    •  
    • Somesh Kumar &Y. M. Tripathi (2005) Estimation of a normal mean restricted to a symmetric interval. International Conference on Recent Advances in Statistics, Jan 4-6, 2005, IIT Kanpur.
    •  
    • Y. M. Tripathiand  ÉricMarchand (2008)Estimating normal quantiles when     the mean is bounded.  Annual Conf. of  Statistical Society of Canada,  Ottawa, May 25-29, 2008.  
    •  
    • M. K. Rastogi, Y. M. Tripathi, “Estimating the parameters of a bathtub distribution under progressive Type II censoring", International Conference on Development and Applications of Statistics in Emerging Areas of Science & Technology, Jammu, 2010.
    •  
    • M. K. Rastogi, Y. M. Tripathi, “Estimating a Parameter of Burr Type XII Distribution using hybrid censored observations", Ninteenth International Conference on Interdisciplinary Mathematical and Statistical Techniques, Patna, 2010.
    •  
    • M. K. Rastogi, Y. M. Tripathi, “Estimating the parameters of a Burr distribution under hybrid censoring",International conference on Recent Developments in Statistics, Applied Econometrics and Forecasting, Allahabad, 2010. (Rastogi received 1st prize in Student Paper Presentation).
    •  
    • M. K. Rastogi, Y. M. Tripathi, “Estimating the Scale Parameter of a Kappa Distribution under Type-II Censoring", Research Scholar Day ", IIT Patna, 2011.
    •  
    • M. K. Rastogi, Y. M. Tripathi, “Estimating the Parameters of a Burr Distribution Under Progressive Type II Censoring", International Congress on Productivity, Quality, Reliability, Optimization and Modelling, ISI Delhi, 2011.
    •  
    • M. K. Rastogi, Y. M. Tripathi, “Estimating the Scale Parameter of a Kappa Distribution Under Progressive Type-II Censoring", National Meet of Research Scholars in Mathematical Sciences ", IIT Kharagpur, 2011.
    •  
    • M. K. Rastogi, Y. M. Tripathi, “Emprical Bayesian estimation for the Rayleigh model based on Hybrid Type-I censoring", National Conference on Bayesian Statistics and its Emerging Applications", BHU, 2011.
    •  
    • M. K. Rastogi, Y. M. Tripathiand A. Asgharzadeh, “Estimating a scale parameter of half-logistic distribution under hybrid censoring", International Congress on Productivity, Quality, Reliability, Optimization and Modelling, ISI Bang, 2011.
    •  
    • S. Singh, M.K. Rastogi and Y.M. Tripathi. On estimating normal parameters using progressive censoring. International Conference on Quality and Reliability Engineering  2011 (ICQER 2011), Organized by Indian Statistical Institute Bangalore.
    •  
    • M. K. Rastogi, Y. M. Tripathi, “Hybrid Censored Inverted Exponentiated Rayleigh Distribution", System Modeling & Advancement in Research Trends, TMU, Moradabad, 2012.
    •  
    • M. K. Rastogi, Y. M. Tripathi, “Estimation for an Inverted Exponentiated Rayleigh Distribution under Progressive Type II Censoring", Twenty First International Conference on Interdisciplinary Mathematical and Statistical Techniques, Panjab University, Punjab, 2012.
    •  
    • M. K. Rastogi, Y. M. Tripathi, “Bayesian Estimation for the Bathtub Distribution under Hybrid Censoring", VII International Symposium on Optimization and Statistics, AMU, Aligarh, 2012.
    •  
    • Y. M. Tripathi, Somesh Kumar & C. Petropoulos (2012) Estimation of a restricted location parameter of an exponential distribution. Mathematical Sciences Section, 99th Indian Science Congress Association, KIET University, Bhubaneswar, 3-7th Jan, 2012.
    •  
    • Y. M. Tripathi, Somesh Kumar & C. Petropoulos (2013) Improved estimators for parameters of a Pareto distribution with a restricted scale. Statistics, Science, and Society: New Challenges and Opportunities: 2013 IISA Conference, Chennai, 2nd-5th January, 2013.
    •  
    • M. K. Rastogi, Y. M. Tripathi, Estimating the parameters of a generalized Inverted Exponential Distribution under hybrid censoring. 8th International Conference of IMBIC on "Mathematical Sciences for Advancement of Science and Technology, Kolkata, December 21-23, 2014.
    •  
    • Y. M. Tripathi, Somesh Kumar & C. Petropoulos, Estimation of the lower bounded shape parameter of a Pareto distribution. Statistics & Society in the New Information Age: Challenges & Opportunities, organized by Institute of Applied Statistics Sri Lanka (IASSL), Colombo, December 28-30, 2014.